
UNIT-3 
The Greedy Method: Introduction, Huffman Trees and codes, Minimum 
Coin Change problem, Knapsack problem, Job sequencing with deadlines, 

Minimum Cost Spanning Trees, Single Source Shortest paths.  
 
Q) Define the following terms. 

i. Feasible solution  ii. Objective function   iii. Optimal solution 
Feasible Solution: Any subset that satisfies the given constraints is called 

feasible solution. 
Objective Function: Any feasible solution needs either maximize or 
minimize a given function which is called objective function. 

Optimal Solution: Any feasible solution that maximizes or minimizes the 
given objective function is called an optimal solution. 
 

Q) Describe Greedy technique with an example. 

Greedy method constructs a solution to an optimization problem piece 

by piece through a sequence of choices that are: 
 

 feasible, i.e. satisfying the constraints. 

 locally optimal, i.e., it has to be the best local choice among all 

feasible choices available on that step. 

 irrevocable, i.e., once made, it cannot be changed on subsequent steps 

of the algorithm. 
For some problems, it yields a globally optimal solution for every 

instance. 

The following is the general greedy approach for control abstraction of 

subset paradigm. 
Algorithm Greedy(a,n) 
//a[1:n] contains n inputs 

{ 
  solution :=  // initializes to empty 

  for i:=1 to n do 
  { 
    x := select(a); 

    if Feasible(solution x) then 
       solution := union(solution, x) 
   } 

  return solution; 
} 

 
Eg. Minimum Coin Change: 
 

Given unlimited amounts of coins of denominations d1 > … > dm ,  
give change for amount n with the least number of coins. 

here, d1 = 25c,  d2 =10c,  d3 = 5c,  d4 = 1c  and  n = 48c 



 
Greedy approach: At each step we take a maximum denomination 

coin which is less than or equal to remaining amount required. 
Step 1: 48 – 25 = 23 

Step 2: 23 – 10 = 13 
Step 3: 13 – 10 = 03 

Step 4: 03 – 01 = 02 

Step 5: 02 – 01 = 01 
Step 6: 01 – 01 = 00 

 

Solution: <1, 2, 0, 3> i.e; d1 – 1coin, d2 – 2 coins, d3 – 0 coin and d4 – 
3 coins. 
Greedy solution is optimal for any amount and “normal’’ set of 

denominations. 
 

Q)  Explain Huffman tree and Huffman code with suitable example. 
 
Huffman tree is any binary tree with edges labeled with 0’s and 1’s yields a 

prefix-free code of characters assigned to its leaves. 
 

Huffman coding or prefix coding is a lossless data compression algorithm. 
The idea is to assign variable-length codes to input characters, lengths of 
the assigned codes are based on the frequencies of corresponding 

characters. 
 
Algorithm to build Huffman tree: 

// Input is an array of unique characters along with their frequency of 
occurrences and output is Huffman Tree.  

1. Create a leaf node for each unique character and build a min heap of all 
leaf nodes.  

2. Extract two nodes with the minimum frequency from the min heap.  

3. Create a new internal node with a frequency equal to the sum of the two 
nodes frequencies. Make the first extracted node as its left child and the 
other extracted node as its right child. Add this node to the min heap. 

4. Repeat step2 and step3 until the heap contains only one node. The 
remaining node is the root node and the tree is complete. 

 
Time complexity: O(nlogn) where n is the number of unique characters. If 
there are n nodes, extractMin() is called 2*(n – 1) times. extractMin() takes 

O(logn) time as it calles minHeapify(). So, overall complexity is O(nlogn). 
Eg.  

character    A B    C    D      _ 
frequency  0.35  0.1  0.2  0.2  0.15 
 

The code word for the character will be 001,   010,   011,   100 and 101 
(fixed length encoding) without using Huffman coding, i.e; on an average 
we need 3 bits to represent a character. 
 
Step1: 

 



 
  Step2:  
 

 
 
Step3: 

 
Step4: 

 
Step5:  

 
Therefore, the codeword   we get after using Huffman coding is  
character     A B     C    D      _ 
frequency  0.35  0.1  0.2  0.2  0.15 

codeword    11   100   00   01   101 
 

 
Average bits per character using Huffman coding 
=   2*0.35 + 3*0.1 + 2*0.2 + 2*0.2 + 3*0.15 

= 2.25 
Therefore, compression ratio: (3 - 2.25)/3*100% = 25% 



Q) Briefly explain about knapsack problem with an example. 
 

Knapsack Problem 
Given a set of items, each with a weight and a value, determine a subset of 

items to include in a collection so that the total weight is less than or equal 
to a given limit and the total value is as large as possible. 
 

Fractional Knapsack 
In this case, items can be broken into smaller pieces, hence we can select 
fractions of items. 

According to the problem statement, 
 There are n items in the store 

 Weight of ith item wi > 0 
 Profit for ith item pi>0 and 
 Capacity of the Knapsack is W 

In this version of Knapsack problem, items can be broken into smaller 
pieces. So, the thief may take only a fraction xi of ith item. 

0 ≤ xi ≤ 1 
The ith item contributes the weight xi *wi to the total weight in the 
knapsack and profit xi.pi to the total profit. 

Hence, the objective of this algorithm is to 

Maximize ∑       
    

subject to constraint, 

                                                  ∑       
     ≤ W 

It is clear that an optimal solution must fill the knapsack exactly, otherwise 
we could add a fraction of one of the remaining items and increase the 
overall profit. 

Thus, an optimal solution can be obtained by 
 

∑       
    = W 

 
Algorithm Greedyknapsack(m,n) 
//p[1:n] and w[1:n] contain the prfits and weights respectively 

//all n objects are ordered p[i]/w[i] ≥ p[i+1]/w[i+1] 
//m is the knapsack size and x[1:n] is the solution vector 

{ 
  for i:=1 to n do 
    x[i]:=0.0; 

  u := m; 
  for i:=1 to n do 

  { 
    if(w[i] > u) then 
      break; 

    x[i] := 1; 
    u := u - w[i]; 
  } 

  if(i ≤ n) then 
    x[i]:= u/w[i]; 

} 



 
Analysis 

If the provided items are already sorted into a decreasing order of pi/wi, 
then the while loop takes a time in O(n); Therefore, the total time including 

the sort is in O(n logn). 

 
Eg. Let us consider that the capacity of the knapsack W = 60 and the list of 

provided items are shown in the following table − 

Item A B C D 

Profit 280 100 120 120 

Weight 40 10 20 24 

 
Step 1: find p/w ratio for each item. 

Item A B C D 

Profit 280 100 120 120 

Weight 40 10 20 24 

Ratio pi/wi 7 10 6 5 

 
Step2: 

As the provided items are not sorted based on pi/wi. After sorting, the items 
are as shown in the following table. 

Item B A C D 

Profit 100 280 120 120 

Weight 10 40 20 24 

Ratio pi/wi 10 7 6 5 

 
Step3: 
We choose 1st item B as weight of B is less than the capacity of the 

knapsack. 
Now knapsack contains weight = 60 – 10 = 50 

 
Step4: 
item A is chosen, as the available capacity of the knapsack is greater than 
the weight of A.  

Now knapsack contains weight = 50 – 40 = 10 

 
Step5: 
Now, C is chosen as the next item.  However, the whole item cannot be 

chosen as the remaining capacity of the knapsack is less than the weight 
of C. 

Hence, fraction of C (i.e. (60 − 50)/20) is chosen. 

Now, the capacity of the Knapsack is equal to the selected items. Hence, no 
more item can be selected. 

The total weight of the selected items is 10 + 40 + 20 * (10/20) = 60 
And the total profit is 100 + 280 + 120 * (10/20) = 380 + 60 = 440 

 
 
 

 



 
 
 

 
Q) Explain job sequencing with deadlines indetail with an example. 

 
We are given a set of n jobs. Associated with job i is an integer deadline di ≥ 
0 and a profit pi>0. For any job i, the profit pi is earned iff the job is 

completed by its deadline. 
   To complete a job one has to process the job on a machine for one unit of 

time. Only one machine is available for processing jobs. 
   A feasible solution for this problem is a subset J of jobs such that each job 
in this subset can be completed by its deadline. 

  The value of a feasible solution J is the sum of the profits of the jobs in J. 
i.e; is                ∑        

An optimal solution is a feasible solution with maximum value. 
 



Eg. 

 
The above is exhaustive technique in which we check all 1 and 2 jobs 
feasible possibilities and the optimal is 3rd sequence which is 4,1 sequence. 

 
The following algorithm is a high level description of job sequencing: 

 
 

 
 
 

 
 

 
 
 

 
 
 

 
 

 
 



The following JS is the correct implementation of above algorithm: 

 
 
The above algorithm assumes that the jobs are already sorted such that P1 

≥  p2 ≥  ... ≥  pn. Further it assumes that n>=1 and the deadline d[i] of job i 
is atleast 1. 
 

For the above algorithm JS there are 2 possible parameters in terms of 
which its time complexity can be measured. 
1. the number of jobs, n 

2. the number of jobs included in the solution J, which is s. 
 

The while loop in the above algorithm is iterated atmost k times. Each 
iteration takes O(1) time. 
The body of the conditional operator if require O(k-r) time to insert a job i. 

Hence the total time for each iteration of the for loop is O(k). This loop is 
iterated for n-1 times. 

 
If s is the final value of k, that is, S is the number of jobs in the final 
solution, then the total time needed by the algorithm is O(sn). Since s ≤ n, in 

worst case, the time complexity is O(n2) 
 



 

 
 
 

 



Q) What is minimum spanning tree?  
i) Explain Prim’s algorithm with an example. 

ii) Explain Kruskal’s algorithm with an example. 
 

A spanning tree of an undirected connected graph is its connected acyclic 
subgraph (i.e., a tree) that contains all the vertices of the graph. If such a 
graph has weights assigned to its edges,  

 
A minimum spanning tree is its spanning tree of the smallest weight, 
where the weight of a tree is defined as the sum of the weights on all its 

edges.  
 

The minimum spanning tree problem is the problem of finding a minimum 
spanning tree for a given weighted connected graph. 
 

Eg. 

 
In the above image (a) is given graph and (b),(c) are two different spanning 
trees. Image (c) is the minimum spanning tree as it have less cost compare 

to (b). 
 

i. Prim’s algorithm: 

 Start with tree T1 consisting of one (any) vertex and “grow” tree one 
vertex at a time to produce MST through a series of expanding 
subtrees T1, T2, …, Tn  

 On each iteration, construct Ti+1 from Ti  by adding vertex not in Ti  
that is closest to those already in Ti (this is a “greedy” step!) 

 Stop when all vertices are included. 



 
 

 Needs priority queue for locating closest fringe(not visited) vertex.  
 Efficiency: 

i. O(n2) for weight matrix representation of graph and array 

implementation of priority queue  
ii. O(m log n) for adjacency lists representation of graph with n 

vertices and m edges and min-heap implementation of the 
priority queue  

 



Eg. 

 
 



 
 
 

 
 
 

 
 
 

 
 

 
 
 



Eg. 2: 

 
 
 

 



ii. Kruskal’s algorithm: 
 

 Sort the edges in nondecreasing order of lengths 

 “Grow” tree one edge at a time to produce MST through a series 

of expanding forests F1, F2, …, Fn-1 

 On each iteration, add the next edge on the sorted list unless 

this would create a cycle.  (If it would, skip the edge.) 

 
 Algorithm looks easier than Prim’s but is harder to implement 

(checking for cycles!) 

 Cycle checking: a cycle is created iff added edge connects vertices in 
the same connected component 

 Runs in O(m log m) time, with m = |E|. The time is mostly spent on 
sorting. 



 
 
Q) Explain indetail about single source shortest path problem. 

 
Single Source Shortest Paths Problem: Given a weighted connected 

(directed) graph G, find shortest paths from source vertex s to each of the 
other vertices. 
 

Dijkstra’s algorithm: Similar to Prim’s MST algorithm, with  a different way 
of computing numerical labels: Among vertices not already in the tree, it 

finds vertex u with the smallest sum  
                                        dv +  w(v,u) 



where  
  v is a vertex for which shortest path has been already found 

     on preceding iterations (such vertices form a tree rooted at s) 
  dv is the length of the shortest path from source s to v 

 w(v,u) is the length (weight) of edge from v to u. 
 

 
 

 Doesn’t work for graphs with  negative weights  

 Applicable to both undirected and directed graphs 

 Efficiency 

o O(|V|2) for graphs represented by weight matrix and array 
implementation of priority queue 

o O(|E|log|V|) for graphs represented by adj. lists and min-heap 
implementation of priority queue 

 

 
 

 
 
 

 
 
 

 
 

 



 



 



 
 

 
 

 
 



 
 

 
 

 
 
Eg 2. 

 
 
The shortest paths and their lengths are: 
From a to b: a – b             of length 3 

From a to d: a – b – d        of length 5 
From a to c: a – b – c         of length 7 

From a to e: a – b – d – e   of length 9 
 
 

 
 
 

 


