UNIT-3
The Greedy Method: Introduction, Huffman Trees and codes, Minimum
Coin Change problem, Knapsack problem, Job sequencing with deadlines,
Minimum Cost Spanning Trees, Single Source Shortest paths.

Q) Define the following terms.

i. Feasible solution ii. Objective function iii. Optimal solution
Feasible Solution: Any subset that satisfies the given constraints is called
feasible solution.

Objective Function: Any feasible solution needs either maximize or
minimize a given function which is called objective function.

Optimal Solution: Any feasible solution that maximizes or minimizes the
given objective function is called an optimal solution.

Q) Describe Greedy technique with an example.

Greedy method constructs a solution to an optimization problem piece
by piece through a sequence of choices that are:

o feasible, i.e. satisfying the constraints.
e locally optimal, i.e., it has to be the best local choice among all
feasible choices available on that step.
e irrevocable, i.e., once made, it cannot be changed on subsequent steps
of the algorithm.
For some problems, it yields a globally optimal solution for every
instance.

The following is the general greedy approach for control abstraction of
subset paradigm.
Algorithm Greedy(a,n)
//al[l:n] contains n inputs
{
solution := ® // initializes to empty
for i:=1 ton do
{
X := select(a);
if Feasible(solution x) then
solution := union(solution, x)
}

return solution;

}

Eg. Minimum Coin Change:

Given unlimited amounts of coins of denominations d1 > ... > dm ,
give change for amount n with the least number of coins.
here, d1 = 25¢c, d2 =10c, d3 = 5c, d4 = 1c and n = 48c



Greedy approach: At each step we take a maximum denomination
coin which is less than or equal to remaining amount required.

Step 1: 48 — 25 =23 Step 4: 03 -01 =02
Step 2: 23-10=13 Step 5: 02 -01 =01
Step 3: 13 -10 =03 Step 6: 01 - 01 =00

Solution: <1, 2, 0, 3> 1i.e; d1 — 1coin, d2 — 2 coins, d3 — 0 coin and d4 —
3 coins.
Greedy solution is optimal for any amount and “normal” set of
denominations.

Q) Explain Huffman tree and Huffman code with suitable example.

Huffman tree is any binary tree with edges labeled with O’s and 1’s yields a
prefix-free code of characters assigned to its leaves.

Huffman coding or prefix coding is a lossless data compression algorithm.
The idea is to assign variable-length codes to input characters, lengths of
the assigned codes are based on the frequencies of corresponding
characters.

Algorithm to build Huffman tree:

// Input is an array of unique characters along with their frequency of

occurrences and output is Huffman Tree.

1. Create a leaf node for each unique character and build a min heap of all
leaf nodes.

2. Extract two nodes with the minimum frequency from the min heap.

3. Create a new internal node with a frequency equal to the sum of the two
nodes frequencies. Make the first extracted node as its left child and the
other extracted node as its right child. Add this node to the min heap.

4. Repeat step2 and step3 until the heap contains only one node. The
remaining node is the root node and the tree is complete.

Time complexity: O(nlogn) where n is the number of unique characters. If
there are n nodes, extractMin() is called 2*(n — 1) times. extractMin() takes
O(logn) time as it calles minHeapify(). So, overall complexity is O(nlogn).

Eg.

character A B C D _

frequency 0.35 0.1 0.2 0.2 0.15

The code word for the character will be 001, 010, 011, 100 and 101
(fixed length encoding) without using Huffman coding, i.e; on an average
we need 3 bits to represent a character.

Stepl:
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Therefore, the codeword we get after using Huffman coding is
character A B C D _

frequency 0.35 0.1 0.2 0.2 0.15

codeword 11 100 00 01 101

Average bits per character using Huffman coding

= 2*0.35+ 3*0.1 + 2*0.2 + 2*0.2 + 3*0.15

=2.25

Therefore, compression ratio: (3 - 2.25)/3*100% = 25%



Q) Briefly explain about knapsack problem with an example.

Knapsack Problem

Given a set of items, each with a weight and a value, determine a subset of
items to include in a collection so that the total weight is less than or equal
to a given limit and the total value is as large as possible.

Fractional Knapsack
In this case, items can be broken into smaller pieces, hence we can select
fractions of items.
According to the problem statement,

e There are n items in the store

« Weight of ith item wi > O

e Profit for itk item pi>0 and

e Capacity of the Knapsack is W
In this version of Knapsack problem, items can be broken into smaller
pieces. So, the thief may take only a fraction x; of itk item.

Osxis<1
The itk item contributes the weight xi *wito the total weight in the
knapsack and profit xi.pi to the total profit.
Hence, the objective of this algorithm is to
Maximize Y;)i_; xi. pi
subject to constraint,
Yo Xi.wi < W

It is clear that an optimal solution must fill the knapsack exactly, otherwise
we could add a fraction of one of the remaining items and increase the
overall profit.
Thus, an optimal solution can be obtained by

oy xi.wi =W

Algorithm Greedyknapsack(m,n)

//p[1l:n] and w[1:n] contain the prfits and weights respectively
//all n objects are ordered p[i]/w[i] = p[i+1]/w][i+1]

//m is the knapsack size and x[1:n] is the solution vector

{
for i:=1 to n do
x[i]:=0.0;
u := m,;
for i:=1 ton do
{
if(w[i] > u) then
break;
x[i] := 1;
u :=u - wfi;
j

if(i < n) then
x[i]:= u/wlil;

}



Analysis

If the provided items are already sorted into a decreasing order of pi/wj,
then the while loop takes a time in Ofn); Therefore, the total time including
the sort is in Ofn logn).

Eg. Let us consider that the capacity of the knapsack W = 60 and the list of
provided items are shown in the following table —

Item A B C D
Profit 280 100 120 120
Weight 40 10 20 24
Step 1: find p/w ratio for each item.

Item A B C D
Profit 280 100 120 120
Weight 40 10 20 24
Ratio pi/wj 7 10 6 S
Step?2:

As the provided items are not sorted based on pi/wi. After sorting, the items
are as shown in the following table.

Item B A C D
Profit 100 280 120 120
Weight 10 40 20 24
Ratio pi/w; 10 7 6 S
Step3:

We choose 1st item B as weight of Bis less than the capacity of the
knapsack.
Now knapsack contains weight = 60 — 10 = 50

Step4:

item A is chosen, as the available capacity of the knapsack is greater than
the weight of A.

Now knapsack contains weight = 50 - 40 = 10

StepS:

Now, Cis chosen as the next item. However, the whole item cannot be
chosen as the remaining capacity of the knapsack is less than the weight
of C.

Hence, fraction of C (i.e. (60 — 50)/20) is chosen.

Now, the capacity of the Knapsack is equal to the selected items. Hence, no
more item can be selected.

The total weight of the selected items is 10 + 40 + 20 * (10/20) = 60

And the total profit is 100 + 280 + 120 * (10/20) = 380 + 60 = 440
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Q) Explain job sequencing with deadlines indetail with an example.

We are given a set of n jobs. Associated with job i is an integer deadline di 2
O and a profit pi>0. For any job i, the profit p; is earned iff the job is
completed by its deadline.

To complete a job one has to process the job on a machine for one unit of
time. Only one machine is available for processing jobs.

A feasible solution for this problem is a subset J of jobs such that each job
in this subset can be completed by its deadline.

The value of a feasible solution J is the sum of the profits of the jobs in J.
i.e; is Y= Pi
An optimal solution is a feasible solution with maximum value.



Eg.

Let n = 4, (p1,p2, ps, pa) = (100,10, 15,27) and (d1,ds, d3,d1) =
(2,1,2,1). The feasible solutions and their values are:

feasible processing
solution sequence value

L (L2 21 110
2. (1, 3) I,30r3,1 115
3. (L4 4,1 127
4. (2, 3) 2,3 25
5. (3, 4) 4, 3 42
6. (1) 1 100
7. (2) 2 10
8. (3) 3 15
9. (4 4 27

The above is exhaustive technique in which we check all 1 and 2 jobs
feasible possibilities and the optimal is 34 sequence which is 4,1 sequence.

The following algorithm is a high level description of job sequencing:

Algorithm GreedyJob(d, J, n)
// J is a set of jobs that can be completed by their deadlines.

J:={l}
for i :=2 to n do

if (all jobs in J U {z} can be completed
by their deadlines) then J := JU{i};



The following JS is the correct implementation of above algorithm:
Algorithm JS(d, 7, n)
// d[i] >1,1<i<mnarethe deacllines, n > 1. The jobs

// are ordered such that p[1] > p[2] > --- > p[n]. J[i]
// 1s the #th job in the optimal solution 1 1 <i k.
// Also, at termination d[J[i]] < d[J[i +1]],1 < i < k.

d[0] := J[0] := 0; // Initialize.

J[1] := 13 // Include job 1.

k:=1;

for ¢ := 2 to n do

{
// Consider jobs in nonincreasing order of p[¢]. Find
// position for i and check feasibility of insertion.
r= k;
while ((d[J[r] > d[i]) and (d[J[r] # 7)) do r = r — 1;
if ((d[J[r]] < d[i]) and (d[i] > r)) then

// Insert i into J[ ].
for g:=k to (r+1) step —1 do Jlg+ 1] := J[q];
Jr+1]:=4k:=k+ 1;

}

return k;

}

The above algorithm assumes that the jobs are already sorted such that P1
2 p2 2 ...2 pn. Further it assumes that n>=1 and the deadline d[i] of job i
is atleast 1.

For the above algorithm JS there are 2 possible parameters in terms of
which its time complexity can be measured.

1. the number of jobs, n

2. the number of jobs included in the solution J, which is s.

The while loop in the above algorithm is iterated atmost k times. Each
iteration takes O(1) time.

The body of the conditional operator if require O(k-r) time to insert a job i.
Hence the total time for each iteration of the for loop is O(k). This loop is
iterated for n-1 times.

If s is the final value of k, that is, S is the number of jobs in the final
solution, then the total time needed by the algorithm is O(sn). Since s < n, in
worst case, the time complexity is O(n?)
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Q) What is minimum spanning tree?
i) Explain Prim’s algorithm with an example.
ii) Explain Kruskal’s algorithm with an example.

A spanning tree of an undirected connected graph is its connected acyclic
subgraph (i.e., a tree) that contains all the vertices of the graph. If such a
graph has weights assigned to its edges,

A minimum spanning tree is its spanning tree of the smallest weight,
where the weight of a tree is defined as the sum of the weights on all its
edges.

The minimum spanning tree problem is the problem of finding a minimum
spanning tree for a given weighted connected graph.

In the above image (a) is given graph and (b),(c) are two different spanning
trees. Image (c) is the minimum spanning tree as it have less cost compare
to (b).

i. Prim’s algorithm:

o Start with tree T: consisting of one (any) vertex and “grow” tree one
vertex at a time to produce MST through a series of expanding
subtrees Ti, T2, ..., Tn

e On each iteration, construct Ti#1 from T; by adding vertex not in T;
that is closest to those already in T; (this is a “greedy” step!)

e Stop when all vertices are included.



ALGORITHM Prim(G)

//Prim’s algorithm for constructing a minimum spanning tree
/Mnput: A weighted connected graph G = (V, E)
//Output: Ep, the set of edges composing a minimum spanning tree of G
Vi < {vg} //the set of tree vertices can be initialized with any vertex
Er «o
fori < 1to|V|—1do
find a minimum-weight edge ¢* = (v*, u*) among all the edges (v, u)
such thatvisin Vyandu isin V — Vy
Vi« VU {u™}
Ep < Ep U {e*}
return £

e Needs priority queue for locating closest fringe(not visited) vertex.
o Efficiency:

i. O(n?) for weight matrix representation of graph and array
implementation of priority queue
ii. O(m log n) for adjacency lists representation of graph with n

vertices and m edges and min-heap implementation of the
priority queue
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Eg. 2:

Tree vertices Remaining vertices Hllustration
a(—=, =) b(a, 3) ¢(—, o0) d(—, o)
e(a, 6) f(a,5) @ @
() @
b(a, 3) e(b, 1) d(—, %) e(a, 6) y
(b, 4) 0 O {D
O 0
c(b, 1) d(c, 6) e(a, 6) (b, 4)
G O O)
Er——)
f(b, 4) df, 5) e, 2) 3 4
G 0 O]
ef,2) d(f. 5

d(f. 5)




ii. Kruskal’s algorithm:

e Sort the edges in nondecreasing order of lengths

e “Grow” tree one edge at a time to produce MST through a series
of expanding forests Fi, Fo, ..., Fn1

e On each iteration, add the next edge on the sorted list unless
this would create a cycle. (If it would, skip the edge.)

ALGORITHM Kruskal(G)

//Kruskal’s algorithm for constructing a minimum spanning tree
//Input: A weighted connected graph G = (V. E)
//Output: E7, the set of edges composing a minimum spanning tree of G
sort £ in nondecreasing order of the edge weights w(e;) <+ < w(ej, )
Er < @: ecounter <0 //initialize the set of tree edges and its size
k<0 /Minitialize the number of processed edges
while ecounter < |V| —1do

k<—k+1

if £7 U {e; } is acyclic

Er < ErUle, ) ecounter < ecounter +1

return £y

e Algorithm looks easier than Prim’s but is harder to implement
(checking for cycles!)

e Cycle checking: a cycle is created iff added edge connects vertices in
the same connected component

e Runs in O(m log m) time, with m = |E|. The time is mostly spent on
sorting.
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Q) Explain indetail about single source shortest path problem.

Single Source Shortest Paths Problem: Given a weighted connected
(directed) graph G, find shortest paths from source vertex s to each of the
other vertices.

Dijkstra’s algorithm: Similar to Prim’s MST algorithm, with a different way
of computing numerical labels: Among vertices not already in the tree, it
finds vertex u with the smallest sum

dv + w(v,u)



where
v is a vertex for which shortest path has been already found
on preceding iterations (such vertices form a tree rooted at s)
dv is the length of the shortest path from source s to v
w(v,u) is the length (weight) of edge from v to u.

ALGORITHM Dijkstra(G, s)

//Dijkstra’s algorithm for single-source shortest paths
/Mnput: A weighted connected graph G = (V, E) with nonnegative weights

I/ and its vertex s
//Output: The length d,, of a shortest path from s to v
/1 and its penultimate vertex p, for every vertex vin V

Initialize(Q) //initialize priority queue to empty
for every vertex vin V
d, < o0. p, < null
Insert(Q, v, d,) //Anitialize vertex priority in the priority queue
d; < 0:  Decrease(Q, s, d;) /lupdate priority of s with d;
Vi <@
fori < Oto|V|—1do
u* < DeleteMin(Q) //delete the minimum priority element
Vi < VU {u*)
for every vertex u in V — V7 that is adjacent to u* do
ifd +wu*, u) <d,
d, < dy+wu*, u)y, p,<u*
Decrease(Q, u, d,)

e Doesn’t work for graphs with negative weights
e Applicable to both undirected and directed graphs
e Efficiency
o O(|V]?) for graphs represented by weight matrix and array
implementation of priority queue
o O(|E|log|V]) for graphs represented by adj. lists and min-heap
implementation of priority queue
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Eg 2.

-/ 7 . 4 o/
Tree vertices Remaining vertices Hlustration
a(—, 0) b(a, 3) ¢(—, o¢) d(a,7) e(—, x) —
b)y—2—(7)
3 . 6
b(a. 3) c(b,3+4) d(b, 3+2) ¢(—, x) p 2 5
\‘j/ 7 \q/ 4 P,

b : (e
d(b, 5 b,7) e(d.5+4 y B 5 d
(b, ) c(h,7) e(d, 54+ 4)
@ a} ®

7 =/ 4

c(b,7) eld. 9

e(d.9)

The shortest paths and their lengths are:

Fromatob:a-b of length 3
Fromatod:a-b-d of length 5
Fromatocia-b-c of length 7

Fromatoe:a-b-d-e oflength9



